Crea sito

Circonferenza tangente una retta r ed una circonferenza F, passante per il punto A appartenente ad r

Figura inversa

Tracciamo una circonferenza nel piano di centro C e raggio r.

Se P un punto distinto da C, il suo inverso P' il punto allineato

con C e con P e tale che:

(distanza tra C e P) x (distanza tra C e P') = r2

per approfondire l'argomento consultare questo sito: http://explora.dsf.unica.it/explora/Mathematica/ 


possibile interpretazione geometrica?

geometricamente si possono ricavare tutti i punti corrispodenti tra la figura e la sua invesione tramite l'omologia, 
dopo aver trovatoi seguenti requisiti:
- C: centro del omologia, ad esso sono allineati i punti corrispondenti
- u: asse della corrispondenza, dove si incontrano le rette corrispondenti
- P, P' una coppia di punti corrispondenti 


Indice

Home